В чем состоит проектирование технологических процессов. Исходная информация и последовательность проектирования технологических процессов. Технология изготовления тел вращения

Ответы.

Исходная информация и последовательность проектирования технологических процессов.

Технологические процессы разрабатываются при проектировании новых, реконструкция действующих предприятий, а также при организации производ­ства новых изделий на действующих предприятиях. При этом принятые вариан­ты являются основой для всех технико-экономических расчетов и проект-ных решений. Уровень разработки технологические процессов определяет уровень работы предприя-тия. Кроме того, технологические процессы разрабатываются и корректируются в условиях действую-щих предприятий при выпуске освоен­ной продукции. Это вызывается непрерывными конструктивны-ми усовершенствованиями изделий, необходимостью систематического использования и внедрения в действующее производство достижений науки и техники путем разра­ботки и проведения организацио-нно-технических мероприятий, необходимо­стью ликвидации «узких» мест производства.

Исходные данные для проектирования технологических процессов

Исходные данные (информация) для проектирования технологических процессов подразделяют на: ба-зовые; руководящие; справочные. Базовая информация включает данные, содержащиеся в конструкто-рской документации на изделие и программу выпуска: чертеж детали с техническими требованиями на изготовление; чертежи сборочных единиц, определяющие служебное назначение дета­лей и их отдель-ных поверхностей; условия работы деталей; объем выпуска; плановые сроки выпуска. Руководящая информция предопределяет подчиненность принимаемых решений стандартам, учет перспективных разработок. Руководящая информация включает: стандарты, устанавливающие требования к техноло-гическим процессам и методам управления ими; стандарты на оборудование и оснастку; документацию на действующие единичные, типовые и групповые техно­логические процесссы, классификаторы техни-ко-экономической информации; производственные инструкциями, материалы по выбору технологичес-ких нормативов (режимов обработки, припусков, норм расхода материалов и др.); документацию по охране труда. К справочной информации относятся: опыт изготовления аналогичных изде­лий, методи-ческие материалы и нормативы, результаты научных исследований Справочная информация включает: данные, содержащиеся в технологической документации опытного производства; описание прогрессив-ных методов изготовления и ремонта; каталоги, паспорта, справочники; альбомы компоновок прогресс-сивных средств технологического оснащения, планировки производственных участков; методические материалы по управлению технологическими процессами Обширная справочная информация содер-жится также в учебниках, учебных пособиях, методических указаниях, монографиях и периодических изданиях. При проектировании технологических процессов для действующих пред­приятий должна учитываться общая производственная обстановка: наличие площадей; состав и степень загрузки обору-дования; наличие технологической оснастки; обеспеченность предприятия квалифицированной рабо-чей силой и др.

Последовательность проектирования технологических процессов изготовления деталей машин.

Процесс технологического проектирования содержит ряд взаимосвязанных и выполняемых в опреде-ленной последовательности этапов. К ним относятся: анализ исходных данных; технологический кон-троль чертежа; определение типа и организационной формы производства; выбор вида исходной заго-товки и метода ее получения; выбор вида технологического процесса; разработка технологического кода детали на основе технологического классификатора; выбор технологических баз и схем базирова-ния заготовки; выбор методов обработки поверхностей заготовки; проектирование маршрута обработ-ки; разработка структуры операций; выбор средств технологического оснащения (оборудования, прис-пособ­лений, режущих и измерительных инструментов); назначение и расчет режимов обработки, наз-начение и расчет припусков и операционных размеров: нормирование технологического процесса и определение квалификации работы; выбор средств механизации и автоматизации элементов техноло-гического процесса и средств внутри-цехового транспорта; составление планировки (по необходимос-ти) и разработка операций перемещения деталей и отходов; разработка мероприятий по обеспечению требований техники безопасности и производственной санитарии; комплексная технико-экономическая оценка технологического процесса; оформление технологической документации.

Проектирование типовых и групповых технологических процессов.

Типовой ТП - это технологический процесс изготовления группы изделий с общими конструктивными и технологическими признаками.

Групповой ТП - это технологический процесс изготовления группы изде­лий с разными конструктив-ными, но общими технологическими признаками.

Технология изготовления тел вращения.

К валам относят детали, образованные наружными и внутренними поверхностями вращения; имеющи-ми одну общую прямолинейную ось при отношении длины цилиндрической части к наибольшему на-ружному диаметру более двух. Валы классифицируются по различным признакам: По форме наруж-ных поверхностей : бесступенчатые; ступенчатые; с фасонными частями (конусами, шлицами, флан-цами, зубчатыми вен­цами, кулач-ками, рейками и т. п.). По форме внутренних поверхностей : сплош-ные; полые. По соотношению размеров : жесткие: нежесткие. Жесткими считаются валы, у которых отношение длины к диаметру не превышает 10... 12. Валы с большим соотношением называют нежест-кими. Особую группу составляют коленчатые, кулачковые валы, шпиндели и крупные валы (диамет-ром более 200 мм и массой более 1 т.).

Основные технологические задачи при обработке валов следующие : выдержать точность и шеро-ховатость поверхностей, выдержать прямолинейность общей оси; выдержать концентричность повер-хностей вращения; выдержать соосность резьб с наружными поверхностями или точными внутренними цилиндрическими отверстиями; обеспечить параллельность шпоночных канавок и шлицев оси вала.

Основные схемы базирования

Основными конструкторскими базами большинства валов являются поверхности опорных шеек. Одна-ко использовать их в качестве технологических баз для обработки наружных поверхностей на всех опе-рациях затруднительно. Для условия сохранения единства и постоянства баз за технологические базы принимают поверхности центровых отверстий.Для исключе­ния погрешности базирования при выдер-живании длин ступеней от торца вала необходимо в качестве опорной технологической базы использо-вать торец заго­товки. С этой целью заготовку устанавливают на плавающий передний центр. Передача крутящего момента при установке вала в центрах осуществляется с помощью поводкового патрона или хомутика.

Технология изготовления втулок

К втулкам относят детали, образованные наружными и внутренними по­верхностями вращения, имею-щими одну общую прямолинейную ось при отно­шении длины цилиндрической части к наибольшему наружному диаметру бо­лее 0,5 и менее или равное 2.

Технологические задачи при обработке втулок заключаются в достижении концентричности наруж-ных и внутренних поверхностей и перпендикулярности торцев к оси отверстия. При изготовлении тон-костенных втулок возникает до­полнительная задача закрепления заготовки и ее обработке без дефор-маций.

Основные схемы базирования

Технологические маршруты обработки втулок в зависимости от их точно­сти и конфигурации строятся по одному из трех вариантов:1 Обработка наружных поверхностей, отверстий и торцев за один уста-нов. Применяется для изготовления мелких втулок, не обработанных термически, из прутка или трубы на токарно-револьверных автоматах, одношпиндельных или многошпиндельных токарных автоматах. Технологическая база – наружная по­верхность и торец прутка. 2 Обработка всех поверхностей за два установа или за две операции с ба­зированием при окончательной обработке наружной поверхности по отверстию (обработка от центра к периферии). Применяется в тех случаях, когда точность внутреннего отверстия задана чертежом выше, чем наружной поверхности. В этом случае порядок черновых перехо-дов строго не регламентируется.При чис­товой обработке сна чала обрабатывается отверстие Обрабо-танное отверстие принимается за технологическую базу (при помощи оправки) и окончательно обраба-тывается наружная поверхность. 3. Обработка всех поверхностей за два установа или за две операции с ба­зированием при окончательной обработке по наружной поверхности (обработка от периферии к цен-тру) Применяется в случаях, когда точность наружных по­верхностей по чертежу выше, чем у внутрен-него отверстия. Порядок черновых переходов - любой. При чистовой обработке сначала обрабатывает-ся наружная поверхность. Эта поверхность принимается за технологическую базу (в патроне) и обраба-тывается внутреннее отверстие. При выборе схемы базирования следует отдавать предпочтение базиро-ва­нию по отверстию (обработка от центра к периферии).

Малярная (для литья).

Токарная: Расточить отверстие с припуском под последующую обработку и подрезать торец.

Технологическая база - черная поверхность обода или ступицы и торец Выполняется в зависимости от конструкции и типа производства на токарном, револьверном или карусельном станке.

Токарная. Подрезать второй торец.

Технологическая база - обработанные отверстия и торец.

Протяжная: Протянуть цилиндрическое отверстие Технологическая база - торец Станок-вертикаль-но-протяжной.Протяжная или долбежная: Протянуть или долбить шпоночный паз. Технологическая база отверстие и торец.Станок - вертикально-протяж­ной или долбежный.

Токарная(черновая ): Точить наружный диаметр и торцы обода, точить клиновидные канавки. Технологическая база - отверстие. Станок токарный или многорезцовый токарный.

Токарная (чистовая ): Точить наружный диаметр и канавки. Технологическая база – отверстие. При криволинейной образующей точе­ние производится на токарно-копирова-лъном станке или токарном станке по копиру.

Сверлильная: Сверлить отверстие и нарезать резьбу (если требуется по чертежу). Тех-нологическая база – торец. Станок - сверлильный.Балансировочная : Балансировка и высверливание отверстий для устранения дисбаланса. Технологическая база - отверстие. Станок балансировочный.

Шлифовальная : Шлифование ступиц (если требуется по чертежу). Технологическая база - отверстие и торец, станок - круглошлифовальный.

Основные схемы базирования

У колес со ступицей (одновенцовых и многовенцовых) с достаточной дли­ной центрального базового отверстия (L/D>1) в качестве технологических баз используют: двойную направляющую поверхность отверстия и опорную базу в осевом направлении – поверхность торца. У одновенцовых колес типа дис-ков (L/D<1) длина поверхности отверстия недостаточна для образования двойной направляющей базы. Поэтому после обработки отверстия и торца установочной базой для последующих операций служит торец, а поверхность отверстия-двойной опорной базой. У валов-шестерен в качестве технологических баз используют, как правило, поверхно­сти центровых отверстий.На первых операциях черновыми тех-нологическими базами являются на­ружные необработанные «черные» поверхности. После обработки отверстия и торца их принимают в качестве технологической базы на большинстве опера­ций. Колеса с нарезанными зубьями после упрочняющей термообработки при шлифовании отверстия и торца (испра-вление технологических баз) базируют по эвольвентной поверхности зубьев для обеспечения наибо-льшей соосности на­чальной окружности и посадочного отверстия. Для обеспечения наилучшей кон-центричности поверхностей вращения колеса применяют следующие варианты базирования. При обра-ботке штампованных и литых заготовок на токар­ных станках за одну установку заготовку крепят в ку-лачках патрона за черную поверхность ступицы или черную внутреннюю поверхность обода. При обра­ботке за две установки заготовку сначала крепят за черную поверхность обода и обрабатывают отверстие, а при второй установке заготовки на оправку обраба­тывают поверхность обода и другие поверхности колеса.

Основные схемы базирования

Схемы базирования корпусных деталей зависят от выбранной последова­тельности обработки. При обработке корпусов используются следующие после­довательности :

а) обработка от плоскости, т.е. сначала обрабатывают окончательно уста­новочную плоскость, затем ее принимают за установочную технологическую базу и относительно нее обрабатывают основные отверстия;

б) обработка от отверстия, т.е. сначала обрабатывают окончательно основ­ное отверстие, оно принима-ется за технологическую базу, а затем от него обра­батывают плоскость.

Более точной является обработка от отверстия, поскольку позволяет иметь равномерный припуск при его обработке. Такая последовательность применяет­ся для корпусов с точными отверстиями больших размеров и точными расстоя­ниями от плоскости до основ-ного отверстия (например, корпус задней бабки токарного станка).При обработке от плоскости труднее выдержать два точных размера-диа­метр отверстия и расстояние от его центра до плоскости ввиду возможности по­лучения неравномерного припуска на обработку отверстия. Корпусные детали базируют, выдерживая принципы постоянства и совме­щения баз. При обработке корпусных деталей призматического типа применяют следующие основные виды базирования: а) по трем плоскостям, образующим координатный угол; б) по плоскос-ти и двум точным отверстиям.

Базирование по трем плоскостям применяется редко ввиду ограниченности доступности к поверхнос-тям корпуса для обработки и необходимости в переус­тановках заготовки для обработки поверхностей, закрытых зажимными элемен­тами приспособления. Наибольшее распространение получило базирова-ние по плоскости и двум отверстиям, как правило, развернутыми по 7-му квалитету точности. У дета-лей фланцевого типа при базировании используют торец фланца и два отверстия, одно из которых мо-жет быть выточкой в торце, а второе - малого диаметра во фланце.

Подготовительные операции

Термическая: Отжиг (низкотемпературный) для уменьшения внутренних напряжений.

Обрубка и очистка заготовки : У отливок удаляют литники и прибыли: на прессах, ножницах, ленточ-ными пилами, газовой резкой и т.д. Очистка отливок от остатков формовочных сме­сей и зачистка свар-ных швов у сварных заготовок производится дробеструйной или пескоструйной обработкой.

Малярная: Грунтовка и окраска необрабатываемых поверхностей (для деталей не под­вергаемых в да-льнейшем термообработке) Операция производится с целью предохранения попадания в работающий механизм корпуса чугунной пыли, об­ладающей свойством «въедаться» в неокрашенные поверхности при механиче­ской обработке.

Контрольная: Проверка корпуса на герметичность. Применяется для корпусов, заполняемых при ра-боте маслом. Проверка производится ультразвуковой или рентгеновской дефектоскопией. В единичном производстве или при отсутствии дефектоскопии проверка может производиться при помощи керосина или мела. Для деталей, работающих под давлением, применяется проверка корпуса под давлением.

Разметочная: Применяется в единичном и мелкосерийном производствах. В остальных типах произ-водств может применяться для сложных и уникальных заготовок с целью проверки выкраиваемости детали.

Методы сборки изделий.

При соединении деталей машин при сборке необходимо обеспечить их взаимное расположение в пре-делах заданной точности. Вопросы, связанные с достижением требуемой точности сборки решаются с использованием анализа размерных цепей собираемого изделия. Достижение заданной точности сбор-ки заключается в обеспечении размера замыкающего звена размерной цепи, не вы­ходящего за пределы допуска.

В зависимости от типа производства различают пять методов достижения точности замыкающе-го звена при сборке: 1. Полной взаимозаменяемости.2. Неполной взаимозаменяемости.3. Групповой взаимозаменяемости.4. Регулирования.5. Пригонки.

Метод полной взаимозаменяемости экономично применять в крупносерий­ном и масссовом произ-водстве. Основан метод на расчете размерных цепей на максимум-минимум. Метод прост и обеспе-чивает 100 %-ую взаимозаменяе­мость. Недостаток метода-уменьшение допусков на составляющие звенья, что приводит к увеличению себестоимости изготовления и трудоемкости.

Метод неполной взаимозаменяемости заключается в том, что допуски на размеры деталей, состав-ляющие размерную цепь, преднамеренно расширяют для удешевления производства. В основе метода лежит положение теории веро­ятности, согласно которому крайние значения погрешностей, составляю-щих звеньев размерной цепи встречаются значительно реже, чем средние значения. Такая сборка целее-сообразна в серийном и массовом производствах при много­звенных цепях.

Таблица Методы достижения точности замыкающего звена, при­меняемые при сборке

Метод Сущность метода Область применения
Полной взаимо­заменяемости Метод,при котором требуемая точ-ность замыкающего звена размер-ной цепи достигается у всех объек-тов путем включения в нее состав-ляющих звеньев без выбора, под-бора или изменения их значе­ний Использова экономично в условиях достижения высокой точности пр и ма­лом числе звеньев раз-мерной цепи и при достаточно большом числе изделии и, подлежащих сборке
Неполной взаимозаменяе­мости Метод, при котором требуемая точ-ность замыкающего звена размер-ной цепи достигается у заранее обусловленной части объектов пу-тем включения в нее составляю­щих звеньев без выбора, подбора или изменения их значений Использование целесообразно для дос­тижения точ-ности в многозвенных раз­мерных цепях, допуски на составляющие звенья при этом больше, чем в предыду­щем методе, что повышает экономичность получения сборочных единиц, у части изделий пог-решность замыкающе­го звена может быть за пре-делами допус­ка на сборку, т.е. возможен опреде-лен­ный риск несобираемости
Групповой взаимозаме-няе­мости Метод, при котором требуемая то-чность замыкающего звена размер-ной цепи достигается путем вклю-чения в размерную цепь состав-ляющих звеньев, принадлежащих одной из групп, на которые они предварительно рассортированы Применятся для достижения наиболее высокой точ-ности замыкающих звеньев малозвенных размер-ных цепей; требует четкой организации сортировки деталей на размерные группы, их маркировки, хра-нения и транспортирования в специ­альной таре
Пригонки Метод при котором точность замы-кающего звена размерной цепи дос-тигается изменением размера ком-пенсирующего звена путем удалее-ния с компенсатора опреде­ленного слоя материала, Используется при сборке изделий с большим чис-лом звеньев, детали могут быть изготовлены с эко-номичными до­пусками, но требуются дополните-льные затраты на пригонку компенсатора, экономи-чность в значительной мере за­висит от правильного выбора компен­сирующего звена, которое не дол-жно принадлежать нескольким связанным размер-ным цепям
Регулирова-ния Метод, при котором требуемая точность замыкающего звена раз­мерной цепи достигается измене­нием размера или положения ком­пенсирующего звена без уда-ления материала с компенсатора. Аналогичен методу пригонки, но имеет большее преимущество в том, что при сборке не требуется выполнять допол­нительные работы со снятием слоя ма­териала, обеспечивает высокую точ­ность и дает возможность периодически ее восста-навливать при эксплуатации машины.
Сборка с ком­пенсирующи-ми материалами Метод, при котором требуемая то чность замыкающего звена разме-рной цепи достигается примене-нием компенсирующего материа-ла, вводимого в зазор между соп-рягаемыми поверхностями дета-лей после их установки в требуе-мом положении Использование наиболее целесообразно для соединений и узлов, базирующихся по плос-костям (привалочные поверхно­сти станин, рам, корпусов, подшипни­ков, траверс и т. п..); в ре-монтной прак­тике для восстановления рабо-тоспособ­ности сборочных единиц, для изготов­ления оснастки

Метод групповой взаимозаменяемости применяют при сборке соединений высокой точности, когда точность сборки практически недостижима методом полной взаимозаменяемости (например, шарико-подшипники). В этом случае детали изготовляют по расширенным допускам и сортируют в зависи-мости от размеров на группы так, чтобы при соединении деталей, входящих в группу, было обеспечено достижение установленного конструктором допуска замы­кающего звена. Недостатками данной сборки являются: дополнительные затраты на сорти­ровку деталей по группам и на организацию хранения и учета деталей; услож­нение работы планово-диспетчерской службы. Сборка методом групповой взаимо-заменяемости применяется в массовом и крупносерийном производствах при сборке соединении, обеспечение точности которых другими методами потребует больших затрат.Сборка методом приго-нки трудоемка и применяется в единичном и мелко­серийном производствах. Метод регулировки имеет преимущество перед методом пригонки, т.к. не требует дополнительных затрат и применяется в мелко- и среднесерийном про­изводствах. Разновидностью метода компенсации погрешностей является способ сбор­ки плоскостных соединений с применением компенсирующего материала, (например, пластмассовой прослойки).

Исходные данные для проектирования технологических процессов сборки

Технологический процесс сборки представляет собой часть производст­венного процесса, содержащая Действия по установке и образованию соедине­ний составных частей изделия Исходными данными для технологического процесса сборки являются: 1 описание изделия и его служебное назначение; 2 сборочные чертежи изделия, чертежи сборочных единиц, спецификации деталей, входящих в изделие;3 рабочие чертежи деталей, входящих в изделие; 4 объем выпуска изделий.

При проектировании технологического процесса для действующего пред­приятия необходимы до-полнительные данные о сборочном производстве : 1 возможность использования имеющихся средств технологического ос­нащения, целесообразность их приобретения или изготовления;2местонахождение предприятия (для решения вопросов по специализации и кооперированию, снабжению); 3 наличие и перспективы подготовки кадров; 4 плановые сроки подготовки освоения и выпуска изделия. Кроме изложенных выше данных необходима руководящая и справочная информация: паспортные данные оборудования и его технологические возмож­ности, нормативы времени и режимов, стандарты на оснастку и т.д.

Типовые узлы станков.

Детали в механизмах станка по их принципиальному признаку можно разделить на группы несущие и направляющие системы и группы привода и управления. Детали и узлы первой группы обеспечивают правильное взаимоположение и направление прямонейно-сти и круговых перемещении узлов деталью и инструментом. Поэтому несущая система в основном обеспечивает точность формы детали. Механиз-мы второй обеспечивают формообразование и вспомогательные движения управления. Механизмы второй групппы в значительной степени определяют точность обработки огибание, винтовой поверх-ности, точность автоматической установки на размер и координаты сверления и растачивания. Элемен-ты несущей системы : 1.Станины и основания: плиты, тумбы, основания без направляющих; станины- простые горизонтальные с одной системой направляющих; простые вертикальные с одной системой направляющих; станины- основания с круговыми направляющими; сложные с несколькими системами направляющих; станины портальные.; 2 Детали и узлы для поддержания и поступательного или ка-чательного перемещения инструмента : суппорту, ползуны, револьверные головки, салазки суппор-тов, поперечены суппортов, рукава. 3.Детали и узлы для поддержания и поступательного движе-ния: столы, салазки столов, консоли; 4.Детали и узлы для поддержание и направления вращающи-хся деталей станка : корпусы коробок скоростей и подач, корпуса шпиндельных бабок. 5. Детали и узлы для вращения инструментов и изделий : шпинделя и их опору, задние бабки, планшайбы, вра-щающиеся колонны.

Механизмы привода и управления :

1. Механизмы формообразующих движений: главного движения- вращательного равномерного, посту-пательного с реверсированием ведущего движения, возратно-поступательного; движение подачи- неп-рерывного зависимого от движения шпинделя, переодического; делительных движений- движение обката, образование винтовых поверхностей.

2.Механизмы вспомогательных движений: транспортирование заготовок и изделий из бункера; зажима-инструмента, заготовок, узлов станка; установочные перемещения узлов станка; отвод стружкиломание уборка.

3. Механизмы управления: пуском, остановом, скоростью равномерных формаобразующих движений; получение точных размеров; копировальные; программные; авторегулирующие.

Шпиндельные узлы станков.

Шпиндель является одной из наиболее ответственной деталью станка. От него во многом зависит точность обработки. Поэтому к шпинделю предъявляют ряд повышенных требований. Конструкцию шпинделя определяют: 1.требумая жесткость, расстояние между опорами, наличие отверстия(для пропуска материала и других целей).2.конструкции приводных деталей(зубчатые колёса, шкивы) и их расположение на шпин-деле.3.тип подшипников и посадочные места под них.4. метод крепления патрона для детали или инстру-мента (определяет конструкцию переднего конца шпинделя).Шпиндели современных станков имеют слож-ную форму. К ним предъявляются высокие требование по точности изготовления; часто до половины всех проверок на точность, проводимых при изготовлении станка, приходится на шпиндельные узел. Техничес-кие условия на изготовлении шпинделей устанавливаются ГОСТом для станков данного класса. Так для шпинделей прецизионных станков средних размеров биение отверстия под подшипники относительно оси шпинделя не должно превышать 1 мкм, овальность и конусность шейки- 2 мкм. Это говорит о высоких тре-бованиях к шпинделю станка и ко всему шпиндельному узлу. Компоновка шпиндельных узлов связана с компоновкой всего станка, т.к. шпиндель является одним из главных его компонентов. В прецизионных станках (токарных, координатно-расточных и т. д.) стремятся выделить шпиндель в самостоятельный кон-структивный узел, отделив его от короб-ки скоростей. Этим значительнее уменьшается передача на шпин-дель вибрации и динамических нагрузок, возникающих в приводе. Компоновка шпиндельных узлов много-шпиндельных станков имеет свою специфику. Здесь расположение шпинделя зависит от расположении оси станка Х-Х(вертикальная и горизонтальная) и расположения по отношению к ней оси вращения шпинделя Z-Z . Ось станка Х-Х обычно совпадает с осью вращающегося стола или шпиндельного барабана. Для сок-ращения площадей и удобства обслуживания в многопозиционных станках широко распространяется вер-тикальная компоновка. Если деталь в период обработки вращается, то удобнее располагать ось вращения шпинделя Z параллельно оси стола. К этой группе относятся многошпиндельные автоматы и полуавтома-ты последовательного и параллельного действия для токарной обработке сверлильно-расточных работ. Расположение оси вращения шпинделя перпендикулярно оси стола. Обработка неподвижных деталей ха-рактерна для агрегатного сверлильно-расточного станка с поворотным столом, где шпиндели компонуют в многошпиндельных головках. Горизонтальное расположение оси стола, когда стол превращается в шпин-дельный барабан, характерна для большой группы станков многошпиндельных токарных автоматов и по-луавтоматов, а обработка неподвижных деталей на барабане с горизонтальной осью вращения производят-ся на барабанно-фрезерных станках с непрерывным временем барабана или на многопозиционных станках. Весьма важным является выбор материала шпинделя. Сред-ненагруженные шпиндели изготовляются обы-чно из стали 45 с улучшением (закалка и высокой отпуск). При повышенных силовых нагрузках приме-няют сталь 45 с низким отпуском.Для шпинделей, требующих высокой поверхностной твёрдости и вязкой сердцевины, применяют сталь 45 с закалкой ТВЧ и низким отпуском. При повышенных требованиях при-меняют сталь 40Х, 38ХМЮА, 38ХВФЮА(шпиндели быстроходных станков), 20Х с цементацией, закалкой и отпуском, 12ХН3(быстроходные и тяжело нагруженные шпиндели). Сталь 65Г применяют для крупных шпинделей. Весьма важным при конструктивном оформлении узла является выбор передач на шпиндель. Он зависит в первую очередь от частоты вращения и передаваемой силы. Зубчатая передача более проста и ком-пактна и передаёт значительные крутящие моменты, однако из-за ошибок шага она обеспечивает низ-кую шероховатость обработанной поверхности и, как правило, не применяется на шлифовальных, коорди-натно-расточных, отделочных-токарных и т. д.В станках с переменными силами резания (во фрезерных) с зубчатыми передачами уменьшается плавность вращения шпинделя и взрастают динамические нагрузки в деталях коробки скоростей. Поэтому зубчатая передача применяяется для частоты вращения не выше 35об/с. Для приводов шпинделей применяют как плоскоремённые, так и клиноремённые передачи. При расчёте привода характер нагрузки учитывают коэ-нт k , на который умножают значение окружной силы. Ремённые передачи применяются для шпинделей частота вращения которых не превышает 100 мин -1 и выше, когда скорость ремня достигает 60-100 м/с.Так для приводов внутришли-фовальных станков ремен-ная передача уже не может обеспечить передачу требуемой наг-рузки, т. к. под ремнём создаётся “воздуш-ный мешок” и возможна его неустойчивая работа. В этом случае привод шпинделя может осуществляться пневматической турбиной 1667 мин -1 или электошпинделем, который применяется при частоте вращения 2500 мин -1 и выше. Высокочастотные эле-ктрошпиндели представляют собой асинхронный электродвига-тель с коротко-замкнутым ротором на 200-800 Гц. несущие шлифовальные круги.

Сборочное оборудование

Оборудование, используемое при сборке, делится на две группы: технологическое и вспомогательное. Технологическое оборудование предназначено для выполнения работ по осуществлению различных сопряжений деталей, их регулировке и контролю. Вспомогательное оборудование предназначено для механизации вспомогательных работ.

Сборочные приспособления

Сборочные приспособления служат для механизации ручной сборки, обес­печивают быструю установку и закрепление сопрягаемых элементов изделия. По степени специализации их подразделяют на уни-версальные и специальные.Универсальные приспособления применяют в единичном и мелкосерийном производствах. К ним относят: плиты, сборочные балки, призмы и угольники. струбцины, домкраты, различные вспомогательные детали и устройства.-Специальные приспособления применяют в крупносерийном и массовом производствах для выполнения сборочных операций. Эти приспособления де­лят на два типа. К первому типу относят приспособления для неподвижной ус­тановки и закрепления базовых деталей и сборочных единиц собираемого изде­лия. Такие приспособления облегчают сборку и повышают производительность труда, т.к. рабочие освобождаются от необходимости удерживать объект сборки руками. Для удобства их часто выполняют поворотными. Данные приспособле­ния могут быть одно- и многоместными, стационарными или передвижными.Ко второму типу специальных сборочных приспособлений относят при­способления для точной и быстрой установки соединяемых частей изделия без выверки. Эти приспособления применяют для сварки, пайки, клепки, склеива­ния, развальцовки, посадки с натягом, резьбовых и других сборочных соедине­ний. Приспособления этого типа могут быть одно- и многоместными, стацио­нарными и подвижными.При больших размерах изделий для изменения их положения в процессе сборки применяют поворотные устройства.

Резцы.

Если для формообразования детали используется метод резания, то в качестве режущего инстру-мента применяется резец . Эта работа может быть совершена только в том случае, если со стороны резца и заготовки будет приложена необходимая сила резания P z . Этой же величине работы будет равно количество энергии затраченное на снятие данного припуска. В случае если величина при-пуска будет очень большой, то его разделяют на несколько проходов режущего инструмента.

Основа любого режущего инструмента -режущий клин AOB с углом заострения β Клин имеет пе-реднюю поверхность OA, контактирующую непосредственно со стружкой, и заднюю поверхность, обращенную к заготовке. Пересечение передней и задней поверхностей режущего инструмента образует главную режущую кромку.

На заготовке выделяют следующие поверхности:1-обрабатываемая поверхность 2-обработанная поверхность;3-поверхность резания (существует временно, во время резания, между поверхностя-ми 1 и 2). Каждый режущий инструмент имеет переднюю и одну или несколько задних поверхностей. Передняя поверхность обращена по ходу относительного рабочего движения в сторону срезаемого слоя на обрабатываемой заготовке. По ней всегда сходит стружка. Задняя поверхность обращена в сторону поверхности резания (обработанной поверхности). Обозначения на рис.4-7:1-главная задняя поверхность.2-вспомогательная задняя поверхность.3-передняя поверхность.4-главное режущее лез-вие.5-вспомогательное режущее лезвие.6 -вершина резца.

КЛАССИФИКАЦИЯ ТЕХНОЛОГИЙ

ПРОМЫШЛЕННЫЕ ТЕХНОЛОГИИ И ТЕХНИЧЕСКИЙ ПРОГРЕСС

ВВЕДЕНИЕ

ПРОМЫШЛЕННЫЕ ТЕХНОЛОГИИ И ИННОВАЦИИ

В настоящее время важнейшими проблемами народного хозяйства России являются: улучшение качественных характеристик производимой промышленной продукции, снижение ее себестоимости и повышение производительности труда, значительное расширение масштабов технического перевооружения действующих предприятий, оснащение их новой высокоэффективной техникой, внедрение прогрессивной технологии и современных методов управления.

Снижение материалоемкости, повышение эффективности использования материальных ресурсов, применение прогрессивных материалов – одна из наиболее актуальных задач промышленного производства. Создание и освоение новых материалов с высокими эксплуатационными характеристиками и стабильностью физико-механических свойств во времени позволит разработать принципиально новые образцы товаров широкого потребления и повышенного спроса, определяющих экономическое положение соответствующей отрасли и страны в целом..

Внедрение высокопроизводительного и прецизионного оборудования, качественно новых технологических процессов, базирующихся на инновационном принципе, – основной путь наращивания промышленных мощностей современного производства. Такое оборудование и процессы должны широко использоваться при изготовлении наукоемкой продукции, соответствующей лучшим мировым образцам и пользующейся повышенным спросом на мировом рынке.

Концепций и прогнозов, касающихся будущего России в ХХ1 веке, к его началу выдвинуто предостаточно. Подходы и мнения в них звучат самые разные. Некоторые из западных стран придерживаются точки зрения, которую высказал в одном из своих выступлений бывший премьер-министр Великобритании Джон Мейджор. Говоря о будущем России, он предрек ей роль кладовой ресурсов для нужд Запада, прибавив, что для этого хватит 40-50 миллионов населения. Если принять логику такого прогноза, то порожденная транснациональными корпорациями финансовая элита, которая, и правит миром, фактически уже сделала за Россию выбор – «кочегарка» и «прихожая». Но тогда этой самой элите придется приписать ряд довольно парадоксальных качеств – недальновидность, нерасчетливость, склонность к порождению очагов напряженности. Провоцируя нестабильность, уязвляя гордыню все еще ядерной державы, мировая финансовая элита, если таковая и существует, выглядит уж слишком отчаянной и злокозненной.

Альтернативный сценарий основан на так называемой стратегии экономического роста. В ее фундаменте – ставка на активизацию конкурентных преимуществ российской экономики. Их оказывается восемь:



1. Уровень образования совместно с ориентацией на коллективизм;

2. Природные ресурсы;

3. Территория и емкий внутренний рынок;

4. Дешевая и достаточно квалифицированная рабочая сила;

5. Научно-промышленный потенциал;

6. Научные школы и конкурентоспособные технологии;

7. Свободные производственные мощности,

8. Опыт экспорта высокотехнологичной продукции и производственная кооперация.

Для реализации всех этих преимуществ, разумеется, должна быть продумана система экономических и административных мер. Расчеты уже в среднесрочной перспективе обещают устойчивый экономический рост не менее чем на 7% в год, общее увеличение инвестиций – по меньшей мере на 15% в год, а в наукоемкую промышленность и новые технологии – до 30%. Инфляция также будет ограничена 30% в год…

Главные надежды многие специалисты прямо возлагают на реализацию научно-промышленного потенциала страны. У России, располагающей 12% ученых мира, собственно, и нет другой серьезной альтернативы. На сырье, даже имея 28% мировых запасов, приемлемого подъема экономики достигнуть невозможно. По прогнозам, его потребление к 2015 году возрастет всего в 2 раза, а мы уже сейчас по внутреннему валовому продукту на душу населения (ВВП) отстаем от развитых стран примерно в 10 раз. Зато объем мирового рынка наукоемкой продукции сегодня составляет 2 трлн. 500 млрд. долларов (доля России – 0,3%). К 2015 году он достигнет примерно 4 трлн. долл. Даже десятая часть этой суммы примерно на порядок превышает потенциальный российский нефте-газовый экспорт. С другой стороны, шансы раскрутить инновационный процесс в национальном масштабе, отпустив инфляцию до 30% в год, представляются проблематичными. Из мирового опыта известно (Аргентина), что это предельный уровень, выше которого инфляция становится главным препятствием экономического роста.

По всем основным показателям страна имеет ту же промышленную инфраструктуру, что и западные страны. И лишь по развитию технологической среды (системы обеспечения качества, стандарты, автоматизация разработок, компьютеризация производства и т.д.) мы очень сильно от них отстаем. Уровень развития технологической инфраструктуры – это и есть своего рода водораздел между индустриальными и постиндустриальными странами. Его-то и надлежит России преодолеть.

Насколько серьезно мы отстаем в данном отношении? Цифры говорят сами за себя. В 2008 г. каждый занятый в российской экономике вносил в ВВП страны вклад в размере 16,1 тысячи долларов. Сравним: в ЮАР этот показатель составлял 38,1 тысячи, во Франции – 59,4 тыс., в США – 74,6 тыс., в Люксембурге – 110 тысяч. Почему так происходит? Откуда такая разница? С одной стороны, в развитых странах предприятия производят более качественную и сложную продукцию, чем в России. Она продается дороже и содержит намного большую добавленную стоимость. С другой стороны, намного более совершенное техническое вооружение западных предприятий обеспечивает большую эффективность труда и позволяет выпускать большее количество готовой продукции.

Для примера возьмем две автомобильные компании, в которых занято равное число работников: АвтоВАЗ – 106 тыс. человек и BMW – 107 тыс. АвтоВАЗ выпускает в год в среднем 734 тысячи автомобилей общей стоимостью 6,1 млрд долларов, BMW – 1,54 млн машин на 78,9 млрд. То есть в «натуральном» выражении производительность на АвтоВАЗе меньше в 2 раза, а в стоимостном – более чем в 13 раз.

Анализ мирового рынка показывает: производство наукоемкой продукции обеспечивают всего порядка 50 макротехнологий (макротехнология представляет собой совокупность знаний и производственных возможностей для выпуска на мировой рынок конкретных изделий – самолетов, реакторов, судов, материалов, компьютерных программ и т.п.). Семь наиболее развитых стран, обладая 46 макротехнологиями, держат 80% этого рынка. США ежегодно получают от экспорта наукоемкой продукции около 700 млрд. долл., Германия – 530, Япония –400. По 16 макротехнологиям прогноз на перспективу уже сделан (см. таблицу).

Рынок макротехнологий (в млрд.долл.)

2010 г. 2015 г.

Авиационные технологии 18-22 28

Космические технологии 4 8

Ядерные технологии 6 10

Судостроение 4 10

Автомобилестроение 2 6-8

Транспортное машиностроение 4 8-12

Химическое машиностроение 3 8-10

Спецметаллургия. Спецхимия.

Новые материалы 12 14-18

Технология нефтедобычи и переработки 8 14-22

Технология газодобычи и транспортировки 7 21-28

Энергетическое машиностроение 4 12-14

Технология промышленного

оборудования. Станкостроение 3 8-10

Микро- и радиоэлектронные технологии 4 7-9

Компьютерные и информационные

технологии 4,6 7,8

Коммуникация, связь 3,8 12

Биотехнологии 6 10

Всего 94-98 144-180

На мировом рынке происходит жесточайшая конкуренция. Так, за последние 7-10 лет США потеряли 8 макротехнологий и, соответственно, их рынки. В результате получили дефицит платежеспособного спроса в 200 млрд. долл. Причина этого в том, что примерно 15 лет назад европейцы сформировали общую программу с целью отвоевать часть рынка у США и Японии. Под нее были перестроены технологии, проведены фундаментальные исследования, реструктурирована промышленность.

Сейчас аналогичную целевую атаку предпринимает европейский авиационный консорциум. Его эксперты определили возможность отвоевать 25% рынка тяжелых самолетов (300 млрд. долл.). Была сформирована соответствующая международная программа. Даже конкурентов-американцев в нее вовлекли, скупая их фирмы. России предложили создать совместный научный центр, заключили контракты с нашими заводами. В целом 20% от всего объема программы стали российскими. Словом, история этого крупнейшего транснационального проекта четко свидетельствует: при распределении заказов решающей, прежде всего, оказывается деловая целесообразность.

По оценке наших специалистов за рынок 10-15 макротехнологий из тех 50, что определяют потенциал развитых стран, Россия вполне способна побороться. Выбор макротехнологических приоритетов в нашей стране должен осуществляться на совершенно новом для нас принципе. Поддержка десятков приоритетных научно-технических программ по всему фронту мыслимых исследований совершенно бесперспективна. Этого сегодня не может себе позволить даже самая богатая страна. Для присвоения той или иной макротехнологии статуса приоритетной для нашей страны предлагается сопостовлять затраты на формирование по ней базы знаний (полной или достаточной) и возможный эффект от реализации конкурентной продукции, созданной на ее основе.

По каждой приоритетной макротехнологии формируются федеральные целевые программы. Заказы по ним правительство на конкурсной основе размещает в институтах и КБ. В результате промышленность получает связанный комплекс заданий по конструированию цельных технологических систем. (Кстати, по аналогичной схеме Россия, приняв лет 15 назад целевую программу «Истребитель-90-х», завоевала рынок объемом в 5 млрд.долл., подобная же аналогия напрашивается, если вспомнить программу по созданию ракетно-космической техники). Создается конкурентная, гармонизированная с мировыми стандартами технологическая среда. А поскольку все целевые программы заведомо ориентированы на конечную продукцию мирового уровня, их привлекательность для западных и российских инвесторов и кредиторов будет достаточно высока. Роль государства – гарантировать кредиты риска.

Для России сейчас, как никогда, актуальна интеграция в мировой рынок наукоемкой технологии. В стране почти отсутствует платежеспособный спрос на часть наукоемкой продукции, что приводит к застою и старению наиболее передовой технологической базы (авиация, космонавтика, электроника, информатика, связь и т.п.). Согласно прогнозам, объем экспорта по приоритетным макротехнологиям уже в первом двадцатилетии ХХ1 века позволит в 2-3 раза повысить платежеспособность населения и обеспечить спрос на наукоемкую продукцию на внутреннем рынке. Это послужит стимулом дальнейшего экономического роста.

Концепция национальных макротехнологических приоритетов встречена с интересом не только в среде специалистов, но и в правительстве. Это позволяет надеяться, что в ХХ1 веке мы все еще сами в состоянии сделать достойный выбор – не в пользу «кочегарки» и «прихожей».

В современной технической (и не только) литературе широко используются различные варианты понятия "технология". Целесообразно как-то систематизировать эти определения.

Технология (Тechnology) – в дословном переводе наука о мастерстве.

Существует ряд отечественных определений, из которых приведем только энциклопедические:

1. Наука или совокупность сведений о методах переработки сырья, материалов, полуфабрикатов, комплектующих, теперь и программных средств в изделия, отвечающие заданным требованиям с точки зрения их технического назначения и качества.

2. Совокупность средств, процессов, операций, методов, с помощью которых входящие в производство элементы преобразуются в выходящие; она охватывает машины, механизмы, навыки и знания.

Зарубежное (западное) определение: применение (употребление) чего либо в индустрии, коммерции, медицине и других областях.

Прогрессивная технология . Технология более высокой ступени развития (по сравнению с существующей), которая является результатом внедрения процессных инноваций. Эта категория включает технологии, базирующиеся на заимствованном передовом опыте, когда внедряются новые или усовершенствованные методы производства изделий, в т.ч. реализованные ранее в производственной практике в смежных областях одного предприятия, других предприятий и других стран и распространяемые путем технологического обмена (беспатентные лицензии, ноу-хау, инжиниринг и т.п.).

Наукоемкая технология . Технология, основанная на новых или значительно усовершенствованных методах производства. Новой технологии соответствует понятие радикальной продуктовой инновации, а усовершенствованной – инкрементальной продуктовой инновации.

Наукоемкие технологии – это технологии, ориентированные на выпуск продукции, выполнение работ и услуг с использованием последних достижений науки и техники, когда получаемая продукция соответствует по своим экономическим и эксплуатационным свойствам лучшим мировым образцам и вполне удовлетворяет новые потребности общества по сравнению с ранее выпускавшейся аналогичного назначения. Создание таких технологий включает проведение обеспечивающих научных исследований и разработок, что приводит к дополнительным затратам средств и необходимости привлечения к работам научного потенциала и персонала. Наукоемкость – показатель, отражающий пропорцию между научно-технической деятельностью и производством в виде величины затрат на науку, приходящихся на единицу продукции. Она может быть представлена соотношением числа занятых научной деятельностью и всеми занятыми в производстве (на предприятии, в отрасли и т.д.).

Высокая технология (High Technology). Технология, базирующаяся на создании новых свойств изделий путем воздействия на материалы на межмолекулярном, межатомном, внутриатомном и т.п. уровнях. Примерами таких воздействий может быть использование энергии ядерного излучения (полимеризация высокомолекулярных соединений), космического излучения (получение сверхчистых материалов), лазерная, плазменная, ультразвуковая и т.п. виды обработки.

Критическая технология . Технология, разработка которой обусловлена критической ситуацией, вызванной необходимостью срочного выпуска продукции в условиях ограниченного времени и ограниченных материальных ресурсов. Технология, далекая от оптимальной, когда главенствующим является не себестоимость изделий, а необходимость их изготовления к определенному календарному сроку.

Разработка технологических процессов (ТП) входит основным разделом в этап «жизненного цикла изделия», связанный с технологической подготовкой производства, и выполняется на основе принципов "Единой системы технологической подготовки производства" (ГОСТ 14.001-83). ТП может разрабатываться с использованием имеющегося типового или группового ТП. При отсутствии таковых ТП разрабатывается как единичный, с учетом ранее принятых прогрессивных решений в действующих единичных ТП - аналогах.

Базовой исходной информацией для проектирования ТП служат: рабочие чертежи изделия в электронном виде или в твердой копии, технические требования, объем годового выпуска изделий, наличие оборудования и оснастки.

В машиностроении изделием называют предмет производства, подлежащий изготовлению. В качестве изделия может выступать машина, устройство, механизм, инструмент и т.п. В качестве составных частей изделия приняты сборочная единица и деталь. Сборочная единица – это часть изделия, составные элементы которой подлежат соединению на предприятии обособлено от других элементов изделия. Сборочная единица в зависимости от конструкции может состоять либо из отдельных деталей, либо включать сборочные единицы более высоких порядков и детали. Различают сборочные единицы первого, второго и более высоких порядков. Сборочная единица первого порядка входят непосредственно в изделие. Она состоит либо из отдельных деталей, либо из одной или нескольких сборочных единиц второго порядка и деталей. Сборочная единица второго порядка расчленяется на детали или сборочные единицы третьего порядка и детали и т.д. Сборочная единица наивысшего порядка расчленяется только на детали. Рассмотренное деление изделия на составные части производится по технологическому признаку.

Деталь – это изделие, изготавливаемое из однородного по наименованию и марке материала без применения сборочных операций. Характерный признак детали – отсутствие в ней разъемных и неразъемных соединений. Деталь представляет собой комплекс взаимосвязанных поверхностей, выполняющих различные функции при эксплуатации машины.

Производственный процесс – это совокупность всех действий людей и орудий труда, необходимых на данном предприятии для изготовления и ремонта продукции. Например, производственный процесс изготовления машины включает не только изготовление деталей и их сборку, но и добычу руды, ее транспортирование, превращение в металл, получение заготовок из металла. В машиностроении производственный процесс представляет собой часть общего производственного процесса и состоит из трех этапов: получение заготовки, преобразование заготовки в деталь, сборка изделия. В зависимости от конкретных условий перечисленные три этапа можно осуществлять на разных предприятиях, в разных цехах одного предприятия и даже в одном цехе.

Технологический процесс – часть производственного процесса, содержащая целенаправленные действия по изменению и (или) определению состояния предмета труда. Под изменением состояния предмета труда понимается изменение его физических, химических, механических свойств, геометрии, внешнего вида. Кроме того, в технологический процесс включены дополнительные действия, непосредственно связанные или сопутствующие качественному изменению объекта производства; к ним относят контроль качества, транспортирование и др. Для осуществления технологического процесса необходима совокупность орудий производства, называемых средствами технологического оснащения, и рабочее место.

Технологическое оборудование – это средство технологического оснащения, в котором для выполнения определенной части технологического процесса размещают материалы или заготовки, средства воздействия на них, а также технологическую оснастку.. К ним относят, например, литейные машины, прессы, станки, испытательные стенды и т.п.

Технологическая оснастка – это средство технологического оснащения, дополняющее технологическое оборудование для выполнения определенной части технологического процесса. К ним относятся: режущий инструмент, приспособления, измерительные средства.

Технологическое оборудование совместно с технологической оснасткой, а в некоторых случаях и манипулятором, принято называть технологической системой. Этим понятием подчеркивается, что результат технологического процесса зависит не только от оборудования, но и в не меньшей степени от приспособления, инструмента, заготовки.

Заготовкой называется предмет труда, из которого изменением формы, размеров, свойств поверхности или материала изготавливают деталь. Заготовку перед первой технологической операцией называют исходной заготовкой.

Рабочее место представляет собой элементарную единицу структуры предприятия, где размещены исполнители работы и обслуживаемое технологическое оборудование, подъемно-транспортные средства, технологическая оснастка и предметы труда.

По организационным, технологическим и экономическим причинам технологический процесс подразделяется на части, которые принято называть операциями.

Технологической операцией называется часть технологического процесса, выполняемая на одном рабочем месте. Операция охватывает все действия оборудования и рабочих над одним или несколькими объектами производства. При обработке на станках операция включает все действия рабочего, управляющего технологической системой, установку и снятие предмета труда, а также движения рабочих органов технологической системы. Число операций в технологическом процессе может изменяться от одной (изготовление детали на прутковом автомате, изготовление корпусной детали на многооперационном станке) до многих десятков (изготовление турбинных лопаток, сложных корпусных деталей). Формируют операцию, главным образом, по организационному принципу, так как она является основным элементом производственного планирования и учета.

В свою очередь, технологическая операция также состоит из ряда элементов: технологических и вспомогательных переходов, установа, позиций, рабочего хода.

Технологический переход – законченная часть технологической операции, выполняемая одними и теми же средствами технологического оснащения при постоянных технических режимах и установке. Вспомогательный переход – это законченная часть технологической операции, состоящая из действий человека и (или) оборудования, которые не сопровождаются изменением свойств предмета труда, но необходимы для выполнения технологического перехода (например, установка заготовки, смена инструмента и т.п.). Переход можно выполнять в один или несколько рабочих ходов.

Рабочий ход – это законченная часть технологического перехода, состоящая из однократного перемещения инструмента относительно заготовки, сопровождаемая изменением формы, размеров, качества поверхности и свойств заготовки. При обработке заготовки со съмом слоя материала используется термин «припуск».

Припуском называется слой материала, удаляемый с поверхности заготовки в целях достижения заданных свойств изготавливаемой поверхности. Слой материала, удаляемый с одной поверхности готовой детали в результате выполнения всех технологических переходов, называется общим припуском на обработку этой поверхности.

Этап жизненного цикла изделия (ЖЦИ), связанный с технологической подготовкой производства, предусматривает:

Проектирование рациональной заготовки;

Разработку маршрутной технологии изготовления и сборки изделий с выбором или проектированием исходных заготовок и необходимого технологического оборудования;

Разработку операционной технологии изготовления и сборки изделий с выбором или проектированием средств технологического оснащения (СТО);

Разработку технологической документации в соответствии с ЕСТД;

Генерацию УП для оборудования с ЧПУ;

Выбор или проектирование средств механизации и/или автоматизации технологических процессов (ТП);

Разработку планировочных решений по размещению технологического оборудования на предусматриваемой территории;

Ведение архива технологической документации;

Оформление изменений в технологической документации, связанных с конструкторскими доработками или совершенствованием ТП.

Заготовка выбирается или проектируется, исходя из соображений, оптимизации всего технологического процесса (ТП), включая заготовительный этап и последующую обработку. При необходимости проводится технико-экономическое обоснование. Проектирует заготовку технолог механического цеха, а ее изготовление осуществляется по технологии заготовительного подразделения предприятия или смежника.

При проектировании заготовки ее размеры определяются по результатам расчета т.н. межоперационных припусков. Припуск – слой материала, удаляемый с поверхности заготовки в целях достижения заданных свойств обрабатываемой поверхности детали. Различают общий припуск и промежуточные припуски по всем последовательно выполняемым технологическим переходам и операциям обработки данной поверхности детали. Общий припуск на какую либо поверхность представляет собой сумму промежуточных припусков на ту же поверхность. Промежуточные припуски необходимы для определения промежуточных (по технологическим переходам и операциям) размеров деталей, общий – для определения размеров заготовок. В практике используются расчетно-аналитический и опытно-статистический методы расчета припусков.

Технология в любой области человеческой деятельности – это отрасль науки, занимающаяся исследованием закономерностей технологических процессов изготовления изделий, с целью использования результатов изучения для обеспечения требуемого качества и количества изделий с наивысшими технико-экономическими показателями. Наука о технологии – это не просто сумма каких-то знаний о технологических процессах, а система строго сформулированных положений о явлениях и их глубинных связях, выраженных посредством особых понятий. С другой стороны, наука о технологии, как и любая отрасль знания, - это результат практической деятельности человека; она подчинена целям развития общественной практики и способна служить теоретической основой.

Объектом технологии является технологический процесс, а предметом – установление и исследование внешних и внутренних связей, закономерностей технологического процесса. Только на основе их глубокого изучения возможно построение прогрессивных технологических процессов, базирующихся на инновационном принципе, обеспечивающих изготовление изделий высокого качества с малыми затратами.

Современная технология развивается по следующим основным направлениям: создание новых материалов; разработка новых технологических принципов, методов, процессов, оборудования; механизация и автоматизация технологических процессов, устраняющая непосредственное участие в них человека. Если осуществление технологического процесса порождает необходимость изготовления орудий труда, являясь причиной их появления, то развитие и совершенствование орудий труда в свою очередь стимулирует совершенствование самого процесса. Становление технологии как научной дисциплины затруднено огромным разнообразием объектов производства (от миниатюрных приборов до атомных электростанций, от простейших изделий типа молотка до сложнейших машин – таких, как космический корабль), бесчисленным множеством методов изготовления и оборудования для их осуществления. Этим обусловлено большое количество классификаций технологий по различным признакам. Приведем только некоторые.

Технологические процессы по функциональному составу подразделяются на заготовительные процессы для получения заготовок, процессы обработки заготовок для получения деталей и сборочные процессы.

Для качественного функционирования заготовительного производства очень важен современный подход к проектированию заготовки с точки зрения оптимизации себестоимости ее изготовления с учетом объема последующей обработки и коэффициента использования материала. Необходимо также учитывать и объемы выпуска продукции, ибо от этого в существенной степени зависит подход к построению технологического процесса. Сокращение расхода металлов и других конструкционных материалов достигается путем их более эффективного использования, применения при проектировании новых изделий прогрессивных решений, а также совершенствования методов обработки материалов.

Значительное сокращение расхода материалов может быть достигнуто при переходе на принципиально новые технологические процессы изготовления заготовок, размеры которых максимально приближаются к размерам готовых деталей. Сокращение припусков на механическую обработку в свою очередь связано с повышением точности заготовок и уменьшением толщины дефектного поверхностного слоя. Технология малоотходного производства способствует также интенсификации механической обработки, так как в ряде случаев могут быть исключены черновые операции (точение, зубофрезерование и другие), которые с успехом заменяются силовым шлифованием или иной чистовой обработкой с высокими режимами резания.

По мере усложнения конфигурации заготовки, уменьшения припусков, повышения точности размеров и параметров расположения поверхностей усложняется и удорожается технологическая оснастка заготовительного цеха и возрастает себестоимость заготовки, но при этом снижается трудоемкость и себестоимость последующей механической обработки заготовки, повышается коэффициент использования материала. Заготовки простой конфигурации дешевле, так как не требуют при изготовлении сложной и дорогой технологической оснастки, однако такие заготовки требуют последующей трудоемкой обработки и повышенного расхода материала.

Главным при выборе заготовки является обеспечение заданного качества готовой детали при ее минимальной себестоимости. Себестоимость детали определяется суммированием себестоимости заготовки по калькуляции заготовительного цеха и себестоимости ее последующей обработки до достижения заданных требований качества по чертежу. Выбор заготовки связан с конкретным технико-экономическим расчетом себестоимости готовой детали, выполняемым для заданного объема годового выпуска с учетом других условий производства.

К числу основных технологических процессов малоотходного производства заготовок, как известно из курса «Технология конструкционных материалов» относятся: прогрессивные методы изготовления литых заготовок из металлов и пластмасс; методы получения заготовок горячим и холодным пластическим деформированием, включая в себя процессы изготовления заготовок без использования прессового оборудования (взрывом, электроимпульсная), холодной высадки и калибровки для исключения последующей механической обработки и т.д.; методы работы с любыми листовыми материалами (металлы, ткани, кожа, пластмассы и т.п.) путем вырубки или раскроя с использованием прогрессивных методов (газопламенного, плазменного, лазерного); современные методы и оборудование для резки материалов, включая электроконтактную, позволяющую значительно повысить производительность при работе с трудно обрабатываемыми материалами. Для заготовок из металло- и минералокерамики получили распространение методы и оборудование порошковой металлургии.

Основу технологических процессов изготовления деталей составляют формообразующие методы, методы изменения физико-механических свойств материала, методы воздействия на качество поверхностного слоя (методы покрытия, отделки, окраски и др.). Формообразующие методы в свою очередь делятся на методы со съемом материала и без съема материала. Первые подразделяются на методы обработки резанием (точение, строгание, сверление, зенкерование, развертывание, фрезерование, протягивание и др.), методы абразивной обработки (шлифование, хонингование, полирование и др.), электрофизические и электрохимические методы.

К методам без съема материала относятся методы пластического деформирования; к методам изменения физико-механических свойств материала относятся различные виды термической обработки, химико-термические процессы.

Технологический процесс сборки содержит действия по установке и образованию соединений деталей, сборочных единиц в изделие. При этом учитывается технически и экономически целесообразная последовательность получения изделия. Качество сборочной единицы характеризуется точностью относительного движения или расположения деталей в сборочной единице, силовым замыканием, натягом в неподвижных соединениях, зазором в подвижных соединениях, качеством прилегания поверхностей и другими.

Под сборочной операцией понимается процесс непосредственного формирования сборочной единицы. Он, как правило, включает ориентацию, соединение, регулировку и закрепление (фиксацию) деталей и сборочных единиц. Сборку соединений условно можно разделить на сборку с натягом и без натяга. Сборка с натягом осуществляется или методом пластического деформирования, или тепловым методом. В свою очередь тепловой метод реализуется посредством нагрева охватывающей детали и (или) охлаждения охватываемой детали.

По масштабу выпуска продукции современное промышленное производство и, в частности машиностроение, условно делится на три типа: единичное, серийное и массовое. Формирование операций для этих типов производств осуществляется по-разному в зависимости от характера, вида и формы организации сборочного процесса.

Единичное производство характеризуется малым объемом выпуска одинаковых изделий, повторное изготовление и ремонт которых, как правило, не предусматривается. Изделия выпускаются широкой номенклатуры в относительно малых количествах, зачастую индивидуально, и либо совсем не повторяются, либо повторяются через неопределенные промежутки времени. Продукция единичного производства – изделия, не имеющие широкого применения и изготавливаемые по индивидуальным заказам, предусматривающим выполнение специальных требований (опытные образцы машин в различных отраслях машиностроения, крупные гидротурбины, уникальные металлорежущие станки, прокатные станы и т.д.).

В условиях единичного и мелкосерийного производства деление на операции осуществляется, как правило, по собираемым сборочным единицам из расчета того, что каждая машина состоит из ряда сборочных единиц: узлов, подузлов, комплектов и отдельных деталей. Такое деление изделий машиностроения на сборочные единицы необходимо для облегчения сборки и позволяет создавать машины по агрегатному принципу. Большое значение имеет унификация сборочных единиц, т.к. она позволяет сократить число специальных сборочных единиц и тем самым способствует уменьшению затрат. Деление на отдельные сборочные единицы позволяет осуществлять их изготовление и регулирование одновременно, независимо одна от другой и, следовательно, сокращать сроки изготовления машины. При этом желательно, чтобы каждая сборочная единица содержала бы как можно меньшее число деталей.

Серийное производство характеризуется изготовлением или ремонтом изделий периодически повторяющимися партиями. Серийное производство делится на мелкосерийное, среднесерийное и крупносерийное. Одним из показателей принадлежности того или иного производства к определенному типу является т.н. коэффициент закрепления операций за одним рабочим местом. Для мелкосерийного производства коэффициент колеблется от 20 до 10, для среднесерийного соответственно от 20 до 10, для крупносерийного – от 1 до 10.

Массовое производство характеризуется небольшой номенклатурой, большим объемом выпуска изделий, непрерывным изготовлением или ремонтом изделий продолжительное время, в течение которого на большинстве рабочих мест выполняется одна, постоянно повторяющаяся операция. В условиях массового и крупносерийного производства формирование переходов в операции производится в соответствии с необходимой последовательностью выполнения установки и закрепления деталей и других сборочных единиц в собираемый объект так, чтобы общие затраты времени на операцию были близки или кратны такту выпуска изделий. При возможности изменения в последовательности установки и закреплении сборочных единиц переходы в операции формируются таким образом, чтобы одинаковые по характеру и квалификации работы выполнял один рабочий. Это позволяет увеличивать производительность, так как совершенствуются навыки рабочего, и уменьшать потребности в оборудовании и рабочем инструменте.

В массовом и крупносерийном производствах используется специальное и специализированное оборудование, перенастройка которого на новый (не известный в момент проектирования оборудования) вид продукции невозможна или связана со значительными затратами. В средне- и мелкосерийном производстве основная доля парка оборудования до сих пор приходится на станки с ручным управлением, резервы повышения производительности которых в основном исчерпаны. Поэтому увеличение объема этого вида производства требует пропорционального роста числа квалифицированных рабочих, нехватка которых остро ощущается уже при существующих объемах выпуска продукции. В результате в промышленности возникли две встречные задачи: обеспечение гибкости крупносерийного и повышение производительности средне- и мелкосерийного производств. Производительность (производственную мощность) можно определить как число изделий, изготавливаемых в производственной системе за некоторый интервал времени, обычно за год.

Ярко выраженное массовое производство характеризуется одной и той же постоянно повторяющейся операцией на протяжении определенного отрезка календарного времени, т.е. для такого производства коэффициент закрепления операций равен единице. Соответственно чем выше этот коэффициент, тем ниже серийность, т.е., скажем, для единичного производства он может достигать многих десятков или сотен.

Если рассматривать в комплексе современное промышленное предприятие, то можно отметить, что в нем сконцентрированы технологии основного и вспомогательного производства и сопутствующие процессы. Основное производство занимается непосредственным изменением качественного состояния предметов труда. В результате могут происходить изменения свойств предметов труда: могут изменяться физические, химические, механические свойства материалов и полуфабрикатов, размеры и форма предметов труда, качество поверхностного слоя, внешний вид и др. Для качественного преобразования предметов труда необходимы затраты энергии, времени и материальных средств. При этом технологический процесс или его части могут осуществляться при непосредственном участии человека или без него.

Вспомогательное производство характеризуется процессами, которые необходимы для осуществления процессов основного производства. Как известно, операции технологического процесса осуществляются на технологическом оборудовании с использованием средств технологического оснащения. Технологическое оборудование нужно поддерживать в рабочем состоянии и обеспечить определенные выходные характеристики. Поэтому на большинстве промышленных предприятий организуется служба главного механика, занимающаяся профилактическим и капитальным ремонтом технологического оборудования. Технологическую оснастку (приспособления, обрабатывающий и измерительный инструменты) наиболее целесообразно закупать на стороне, но если по основному технологическому процесс требуется специальная оснастка, ее приходится изготавливать в инструментальных подразделениях предприятия. То же касается и переточки затупившегося обрабатывающего инструмента. Служба главного энергетика занимается бесперебойным снабжением основного производства энергией. Служба снабжения занимается обеспечением основного и вспомогательного производства всеми необходимыми комплектующими и материалами.

Сопутствующие процессы. Во время основного и вспомогательного процессов, как правило, имеют место процессы трения, выделения тепловой энергии и нагрева элементов технологической системы, вибрации, химической реакции; все они могут как положительно, так и отрицательно влиять на результаты технологического процесса. Сопутствующие процессы – это объективно действующие процессы независимо от нашего желания, поэтому приходится принимать различные меры по уменьшению их вредного влияния.

Проектирование технологических процессов состоит из следующих взаимосвязанных этапов: анализа исходных данных, технологи­ческого контроля детали, выбора типа производства, выбора заго­товки, выбора баз, установления маршрута обработки отдельных поверхностей, проектирования технологического маршрута изго­товления детали с выбором типа оборудования, расчета припусков расчета промежуточных и исходных размеров заготовки; построе­ния операций, расчета режимов обработки, технического нормиро­вания операций, оценки технико-экономических показателей про­цесса, оформления технологической документации.

Анализ исходных данных и технологический контроль чертежа и технических условий . При анализе исходных данных следует озна­комиться с назначением и конструкцией детали, подлежащей изго­товлению, техническими условиями ее изготовления и эксплуата­ции, программой выпуска деталей, а также с производственными условиями, в которых намечено выполнение процесса (оборудова­ние, транспортные средства и др.). Исходные данные предопреде­ляют принципиальное направление проектируемого процесса с целью обеспечения требуемого качества и эффективности при заданном масштабе выпуска.

В процессе анализа исходных данных технолог осуществляет технологический контроль чертежа и технических условий. При этом следует выявить пути улучшения технологичности конструк­ции детали, рассмотренные в гл. 4. Это позволит уменьшить трудо­емкость изготовления детали, снизить себестоимость ее обработки

Выбор типа производства . Тип производства выбирают, исходя из заданной программы выпуска путем расчета такта выпуска дета­лей по формуле (1.9). τ = 60 Ф д /N , Ф д – действительный фонд времени в планируемом периоде (месяц, сутки, смена), N – производственная программа на этот период, шт.

Если такт выпуска близок к ориентировочно установленной средней длительности основных операций обработки данной детали, то производство считают массовым . Если же такт выпуска значительно превышает длительность основных операций то детали изготовляют по принципу серийного производства с обработкой их производственными партиями. Размер производственной партии определяют, исходя из трудоемкости операций обработки, трудоемкости наладки оборудования на основных операциях, затрат незавершенного производства и других экономических и орга­низационных соображений.

Размер экономически выгодной партии определяют по формуле

где – сумма подготовительно-заключительного времени по всем операциям, мин; – сумма штучного времени по всем операциям, мин; К – коэффициент, учитывающий1 потери времени на переналадку оборудования (К = 0,04 относится к крупносерийному производству и К = 0,18 – к мелкосерийному).


Выбор исходной заготовки .

На выбор заготовки и метода ее по­лучения значительное влияние оказывают характеристика мате­риала, из которого должна изготовляться деталь, ее конструктив­ные формы и размер, программа выпуска.

Метод получения заготовки должен обеспечить наименьшую себестоимость изготовления детали……

Следует также иметь в виду, что при малой программе выпуска деталей расходы на изготовление специальной оснастки для заго­товительных процессов (проектирование и изготовление штампов, пресс-форми др.) не окупаются.Таким образом, выбор метода полу­чения заготовки должен быть обоснован экономическими расчетами себестоимости изготовления детали с учетом себестоимости полу­чения заготовки и себестоимости механической обработки.

При выборе литых заготовок и поковок помимо назначения припусков на обработку и допусков на размеры указывают также штамповочные или литейные уклоны, радиусы округлений, допу­стимые дефекты поверхностей, базовые поверхности для первой операции механической обработки и требования, предъявляемые к этим поверхностям, способы термической обработки заготовки и очистки ее поверхностей.

Для заготовок из проката и специальных профилей размеры устанавливают согласно ГОСТ, учитывая необходимые припуски на обработку.

Выбор технологических баз является основой построения тех­нологического процесса изготовления детали и имеет большое зна­чение для обеспечения требуемой точности обработки и экономич­ности процесса. Назначая технологические базы для первой и после­дующих операций обработки, следует руководствоваться следую­щими общими соображениями:

Установочная и направляющая базы должны иметь необходимую протяженность для обеспечения устойчивого положения заготовки при ее обработке;

Обрабатываемая заготовка должна иметь минимальные деформа­ции от действия силы резания, зажимной силы и от действия соб­ственной массы;

В качестве технологической базы следует принимать поверх­ности, обеспечивающие наименьшую погрешность установки и исклю­чающие погрешность базирования.

На первой операции должны быть обработаны те поверхности, которые будут приняты за технологическую базу для последующей операции.

Так как технологической базой на первой операции будут черные (необработанные) поверхности, следует выбирать те по­верхности, которые допускают по возможности равномерное снятие припусков и достаточно точное взаимное расположение обрабаты­ваемых и не подлежащих обработке поверхностей.

Если все поверхности детали подвергают механической обра­ботке, то в качестве базы на первой операции следует выбирать поверхности с наименьшим припуском, чтобы при последующей обработке не получилось брака из-за недостатка припуска.

На второй и последующих операциях тех­нологические базы должны быть возможно точными по геометри­ческой форме и по шероховатости поверхности.

Если технологическая база не совпадает с измерительной, то воз­никает погрешность базирования (см. выше). Следует иметь в виду, что лучшие результаты по точности будут достигнуты в том случае, если технологической и измерительной базой служит конструкторская база.

Необходимо придерживаться принципа постоянства базы на ос­новных операциях обработки, т. е. использовать в качестве технологической базы одни и те же поверхности. Соблюдение этого принципа особенно важно, если измерительные базы при выпол­нении различных операций переменны и в связи с этим затрудни­тельно осуществить принцип совмещения баз. С целью соблюдения принципа постоянства баз в ряде случаев на деталях издают искус­ственные технологические базы , не имеющие конструктивного назначения (центровые гнезда валов, специально обработанные отверстия в корпусных деталях при базировании их на штифты и др.).

Если по условиям обработки не удается выдержать принцип постоянства базы, то в качестве новой базы принимают обработан­ную поверхность по возможности наиболее точную и обеспечивающую жесткость установки заготовки. Если вновь принятая база не является измерительной, то рассчитывают допуск на получае­мый размер с учетом появляющейся погрешности базирования и, если необходимо, ужесточают допуск на размер, определяющий положение новой технологической базы относительно измерительной базы.

При выборе технологических баз следует оценить точность и надежность базирования, увязав их с производительностью тех­нологического процесса.

Установление маршрута обработки отдельных поверхностей. На начальной стадии разработки технологического процесса составляют перечень технологических переходов, которые могут быть применены для достижения конечной точности и шерохова­тости поверхности, проставленных на рабочем чертеже детали. Между рабочим чертежом и технологическим процессом изготовле­ния детали существуют тесные связи. Они, в частности, обусловлены тем, что каждому методу обработки соответствуют определенные достижимые точность получаемого размера и шероховатость по­верхности. Поэтому необходимый метод окончательной обработки поверхности подсказывается рабочим чертежом детали.

Выбор метода окончательной обработки облегчается использо­ванием точностных характеристик различных технологических методов (см. гл. 2). Но так как каждому методу обработки соответ­ствует некоторое оптимальное значение припуска, а общий припуск обычно превышает значение, допускаемое для этого метода, то можно определить и методы предшествующей обработки. Например, при обработке шейки вала до диаметра 50h 8 при использовании в качестве заготовки проката последовательность технологических переходов такова: 1) черновое точение, 2) чистовое точение, 3) шли­фование? В данном случае переход чернового точения необходим для приближения формы и размеров заготовки к форме и размерам детали.

Зависимость структуры технологических переходов от вида исходной заготовки может быть показана и на следующем примере: если в исходной заготовке имеется отлитое или штампованное отверстие, то переход сверления исключен и обработка начинается с зенкерования или растачивания отверстия.

Из приведенных выше примеров видно, что конструктивные формы и точность исходной заготовки предопределяют содержание первого технологического перехода.

Определив первый и окончательный технологические переходы, устанавливают необходимость промежуточных переходов. Напри­мер, недопустимо при обработке отверстия по 7-му квалитету точ­ности после первого перехода (чернового растачивания отверстия) сразу применять чистовое развертывание, так как точность и ка­чество поверхности после чернового растачивания не обеспечат качественного выполнения чистового развертывания.

Получение конечной точности обрабатываемой поверхности может быть достигнуто путем применения различных технологиче­ских переходов. Например, при обработке отверстия с отклоне­нием Н 8 в заготовке из чугуна с предварительно отлитым отвер­стием конечными переходами могут быть либо развертывание 1 (рис. 6.2, нижний ряд), либо тонкое растачивание 2, либо протя­гивание 3 . Первыми технологическими переходами могут быть черновое зенкерование 4 , либо черновое растачивание 5, а про­межуточными - чистовое зенкерование 6, либо чистовое растачи­вание 7 . На рис. 6.2 показана схема десяти вариантов обработки данного отверстия. Из приведенного примера видно, что число возможных вариантов обработки данной поверхности может быть значительным, причем все они будут различными по эффективности.

На данном этапе разработки технологического процесса при­пуски и режимы обработки не рассчитывают. Поэтому при назна­чении состава технологических переходов следует использовать справочные данные о производительности и точности при различных методах обработки и рекомендуемые типовые технологические мар­шруты. Значительную помощь при этом может оказать ЭВМ.

При дальнейшей разработке маршрута обработки детали и от­дельных операций состав технологических переходов уточняется и корректируется. На последовательность технологических пере­ходов в значительной мере влияет требование обеспечения взаимной координации поверхностей деталей, указанное в рабочем чертеже. Решение этой задачи связано с правильным выбором баз при уста­новке заготовки на первой и последующих операциях, а также с рациональным назначением последовательности технологических переходов, если учесть, что наилучшая взаимная перпендикуляр­ность, параллельность и концентричность поверхностей достига­ются при их обработке с одной установки.

Определение последовательности технологических переходов при обработке отдельных поверхностей детали позволяет выявить необходимые этапы обработки (черновая, чистовая и отделочная) и является базой для формирования технологического маршрута изготовления детали и отдельных операций.

Проектирование технологического маршрута изготовления де­тали . Под технологическим маршрутом изготовления детали пони­мается последовательность выполнения технологических операций (или уточнение последовательности операций по типовому или групповому технологическому процессу) с выбором типа обору­дования. На этапе разработки технологического маршрута при­пуски и режимы обработки не рассчитывают, поэтому рациональ­ный маршрут выбирают с использованием справочных данных и руководящих материалов по типовым и групповым методам обра­ботки. Значительную помощь при этом может оказать ЭВМ.

Технологические маршруты весьма разнообразны и зависят от конфигурации детали, ее размеров, требований точности, про­граммы выпуска, однако при проектировании маршрута следует руководствоваться некоторыми общими соображениями. С методи­ческой точки зрения эта работа может быть представлена следую­щей примерной схемой.

1. Сначала выявляют необходимость расчленения процесса изготовления детали на операции черновой, чистовой и отделочной обработки. Эту работу выполняют с использованием разработок по установлению маршрута обработки различных поверхностей данной детали.

2. Операцию черновой обработки целесообразно отделить от чи­стовой, чтобы уменьшить влияние деформации заготовки после черновой обработки. Однако если заготовка жесткая, а обрабаты­ваемые поверхности незначительны по длине, то такое расчленение не обязательно.

3. Отделочная обработка, как правило, выполняется на конеч­ной стадии процесса. Но от этого положения в отдельных случаях приходится отступать. Например, если окончательная обработка поверхности связана с возможным отходом заготовок в брак, то эту операцию не следует выполнять последней, чтобы не иметь лишних затрат труда.

4. При формировании операций следует учесть, что определен­ная группа поверхностей потребует обработки с одной установки. К таким поверхностям относятся соосные поверхности вращения и прилегающие к ним торцовые поверхности, а также плоские поверхности, обрабатываемые в несколько позиций.

5. В самостоятельные операции выделяются обработка зубьев колес, нарезание шлицев, обработка пазов, сверление отверстий с применением многошпиндельных головок и др.

6. При формировании операций следует иметь в виду следующее: а) на первой операции необходимо обработать те поверхности, которые будут использованы в качестве установочных баз на вто­рой, а возможно и на последующих операциях механической обра­ботки; б) наличие термической или химико-термической обработки.

7. При формировании технологического маршрута устанавли­вается тип применяемого оборудования (станок токарный, фрезер­ный, сверлильный и т. д.).

8. Выполненная наметка технологического маршрута оформля­ется в виде операционных эскизов заготовок с указанием схемы их базирования и с выделением жирными линиями обрабатываемых поверхностей.

9. В маршрут технологического процесса включают опущенные второстепенные операции (обработку крепежных отверстий, снятие фасок, зачистку заусенцев, промывку и др.), а также указывают место контрольных операций.

После оценки принятых решений вносят необходимые кор­рективы.

Разработку техпроцессов проводят в следующей последовательности:

I. Сбор исходных данных. Анализ служебного назначения детали.

Исходные данные: чертеж детали, годовая программа выпуска, продолжительность выпуска.

Под служебным назначением детали (изделия) понимают четко сформулированную задачу, для решения которой она применяется.

Анализ служебного назначения включает:

1. Установление условий, в которых работает деталь (изделие).

2. Определение нагрузок, действующих на деталь (постоянные, перемен­ные, циклические, крутящий момент, изгибающие и др.)

3. Классификацию поверхностей детали.

Рис. 2.1. Классификация поверхностей детали

На рис. 2.1 приведена классификация поверхностей ступенчатого вала.

Поверхности детали классифицируются следующим образом:

Основные конструкторские базы (ОКБ) - это базы, определяющие положение детали в изделии;

Вспомогательные конструкторские базы (ВКБ) - это базы, которые определяют положение деталей, присоединяемых к рассматриваемой детали;

Исполнительные поверхности (ИП) - это поверхности, при помощи которых деталь выполняет свое служебное назначение;

Свободные поверхности (СП) - это поверхности, определяющие заданные контуры детали.

II. Анализ технологичности конструкции детали.

Этот анализ является важной частью при проектировании технологическо­го процесса и заключается в технологическом контроле чертежа детали.

При этом:

1. Анализируется чертеж детали:

а) достаточность графической информации о детали (видов, разрезов, сечений и т.д.)

б) достаточность и правильность простановки размеров, величин ше­роховатостей, погрешностей формы и расположения поверхностей и т.д.

в) наличие сведений о материале детали, покрытиях, ее массе, тер­мообработке и др.

2. Оценивается возможность упрощения конструкции детали.

3. Устанавливается возможность применения высокопроизводительных мето­дов обработки.

4. Определяется соответствие стандарту конструктивных элементов детали (фасок, канавок и др.).

5. В первом приближении намечаются поверхности, которые будут использо­ваны в качестве исходных баз.

III. Выбор типа производства и формы его организации.

В машиностроении различают три типа производства: единичное (Е), серийное (С) и массовое (М).

Серийное производство разделяют на мелкосерийное (МС), среднесерий­ное (СС) и крупносерийное (КС).

При помощи таблицы 2.1 ориентировочно можно определить тип производства, в зависимости от массы изготавливаемой детали или трудоемкости сборки изделия и годовой про­граммы выпуска.

Таблица 2.1

Выбор типа машиностроительного производства

Масса детали, кг Тип производства
Е МС СС КС М
Годовой объем выпуска, шт/год
<1,0 <10 10-1500 1500-100000 75000-200000 >200000
1,0-2,5 < 10 10-1000 1000-50000 50000-100000 >100000
2,5 - 5,0 < 10 10-500 500-35000 35000-75000 >75000
5,0-10,0 <10 10-300 300-25000 25000-50000 >50000
10-20 <10 10-200 200-10000 10000-25000 >25000
20-300 <10 10-150 150-1000 1000-5000 >5000
>300 <5 5-100 100-300 300-1000 >1000

Для качественной оценки типа производства можно использовать крите­рий, называемый коэффициентом закрепления операций (КЗО).

КЗО равен отношению числа всех операций, выполняемых в течение месяца (SО) к числу рабочих мест (Р):

Если КЗО> 40, то это единичное производство; от 20 до 40 - мелкосерий­ное; от 10 до 20 - среднесерийное; свыше 1 до 10 - крупносерийное; равно единице - массовое.

Различают следующие формы организации ТП: предметная непоточная (Е), групповая непоточная (МС), групповая переменно-поточная (СС) и поточная непрерывная (КС, М).

Групповая форма организации производства характеризуется сле­дующими признаками:

1. Изделие запускается в производство партиями (сериями) с определенной периодичностью.

2. Оборудование расставляется по типам станков, создавая производствен­ные участки.

3. За каждым рабочим местом закрепляется несколько технологических операций.

При групповой форме организации производства рассчитывают размер партии деталей для разового запуска в производство:

где: а - периодичность запуска в днях (принимают 3,6,12,24 и т.д.); 254 -среднее количество рабочих дней в году.

Поточная форма характеризуется следующими признаками:

1. Специализацией каждого рабочего места на выполнение одной операции (КЗО=1).

2. Размещение рабочих мест производится строго в последовательности, соот­ветствующей ТП.

Режим работы поточной линии оценивается тактом выпуска деталей.

Такт выпуска (tв) - это промежуток времени, в течение которого с по­точной линии должна выпускаться единица продукции. Его можно опреде­лить при помощи формулы:

, мин/шт. ,

где: Fд- действительный фонд рабочего времени за год (в часах); N - годо­вая программа выпуска в штуках.

В таблице 2.2 приведены основные характеристики различных типов производства.

IV. Выбор и проектирование заготовки.

V. Выбор методов обработки отдельных поверхностей.

VI. Разработка технологического маршрута изготовления детали. Разработ­ка плана обработки и схем базирования.

VII. Разработка технологических операций.

7.1. Выбор последовательности выполнения технологических переходов.

7.2. Окончательный выбор станка, оснастки, измерительного и режущего инструмента.

7.3. Расчет режимов резания и норм времени.

7.4. Расчет загрузки технологического оборудования.

7.5. Оформление технологической документации.

VIII. Проектирование технологической оснастки.

Таблица 2.2

Характеристика типов производства

Показатель техпроцесса (ТП) Тип производства
Единичное Серийное Массовое
1. Форма органи­зации ТП предметная непоточная групповая поточная
2. Повторяемость изделий отсутствие заранее обусловленной повто­ряемости периодическое повторе­ние партий непрерывный выпуск в течение длительного времени
3. Унификация ТП использование типо­вых ТП разработка специальных ТП на базе типовых разработка специаль­ных ТП на базе анали­за
4. Заготовка прокат, литье в землю свободная ковка профильный прокат, ли­тье в кокиль, горячая штамповка спец. прокат, литье в кокиль, холодная и го­рячая штамповка
5. Припуск на обработку значительный незначительный минимальный
6. Расчет припус­ков укрупненный по таб­лицам подробный по перехо­дам детальный на базе размерного анализа
7. Оборудование универсальное универсальное, отчасти специализированное специализированное и специальное
загрузка различными деталями без какой-либо закономерности периодическая смена детали на станках непрерывная загрузка оборудования одними и теми же деталями
9.КЗО свыше 40 от 1 до 40
10. Расстановка оборудования по типам и размерам по направлениям харак­терных грузопотоков по ходу ТП
11 Настройка станков отсутствие настройки, работа по промерам по измерительным инст­рументам и приборам по эталонам
12. Оснастка универсальная универсальная и спе­циальная специальная
13. Расчет режи­мов резания по общемашиност­роительным нормати­вам по отраслевым нормати­вам и эмпирическим формулам аналитическим путем на базе математиче­ской модели
14. Квалификация рабочих Высокая различная низкая, при высокой квалификации налад­чиков

3. ТЕХНОЛОГИЧЕСКИЙ ПРОЦЕСС СБОРКИ ИЗДЕЛИЯ

Сборка является заключительным этапом при изготовлении машин. Объем работ при сборке в автомобилестроении составляет до 20% от об­щей трудоемкости изготовления автомобиля.

Технологический процесс сборки - это совокупность операций по со­единению деталей в определенной последовательности с целью получить изделие, отвечающее заданным эксплутационным требованиям.

Изделие состоит из основных частей, роль которых могут выполнять детали, сборочные единицы, комплексы, комплекты.

Сборочная единица - часть изделия, составные части которой подле­жат соединению между собой на сборочных операциях на предприятии-изготовителе. Её характерной особенностью является возможность сборки обособленно от других элементов изделия. Сборочная единица изделия в зависимости от конструкции может собираться либо из отдельных деталей, либо из сборочных единиц высших порядков и деталей. Различают сбороч­ные единицы первого, второго и более высоких порядков. Сборочная еди­ница первого порядка входит непосредственно в изделие. Она состоит либо из отдельных деталей, либо из одной или нескольких сборочных единиц второго порядка и деталей и т.д. Сборочную единицу наивысшего порядка расчленяют только на детали. Сборочные единицы называют на практике узлами или группами.

Сборочная операция - это технологическая операция установки и об­разования соединений сборочных единиц изделия. Сборку начинают с ус­тановки и закрепления базовой детали. Поэтому в каждой сборочной еди­нице должна быть найдена базовая деталь - это деталь, с которой начинают сборку изделия, присоединяя к ней детали и другие сборочные единицы.

По последовательности выполнения различают:

Промежуточную сборку - это сборка мелких элементов на механических участках или сборка 2-х деталей перед окончательной обработкой;

Узловую сборку - это сборка сборочных единиц изделия;

Общую сборку - это сборка изделия в целом.

По наличию перемещений собираемых изделий различают:

Стационарную сборку - это сборка изделия или основной его части на од­ном рабочем месте;

Подвижную сборку - собираемое изделие перемещается по конвейеру.

По организации производства различают:

Поточную сборку, - которая предусматривает разделение технологического процесса на отдельные технологические операции, продолжительность ко­торых не превышает такта выпуска изделия;

Групповую сборку, - которая предусматривает возможность сборки раз­личных однотипных изделий на одном рабочем месте.

По степени подвижности различают подвижные и неподвижные со­единения.

Подвижные соединения обладают возможностью относительного пе­ремещения в рабочем состоянии в соответствии с кинематической схемой механизма. При этом используются посадки с зазором. Для сборки не тре­буется значительных усилий.

Неподвижные соединения не позволяют перемещаться друг относи­тельно друга соединяемым деталям. В неподвижных соединениях используются переходные посадки или посадки с натягом.

По характеру разбираемости соединения подразделяют на разъемные и неразъемные.

Разъемные соединения могут быть полностью разобраны без повре­ждения соединяемых деталей.

Неразъемные соединения собираются при помощи прессовых поса­док, сварки, пайки, склеивания и т.д. Без повреждения собираемых деталей их разобрать невозможно.

Методы сборки - определяются конструктором изделия путем про­становки допусков сопрягаемых деталей.

При сборке всегда происходит материализация заложенных конст­руктором размерных цепей.

Метод полной взаимозаменяемости - позволяет проводить сборку из­делия без какого-либо подбора или дополнительной обработки деталей. Метод наименее трудоемок, но необходимо увеличить затраты на механи­ческую обработку.

Метод неполной взаимозаменяемости – предусматривает, что ряд соединений не могут собраться без дополнительной доработки деталей.

Метод групповой взаимозаменяемости (селективная сборка) – предусматривает предварительную сортировку деталей на группы. Сборка в пределах группы осуществляется по методу полной взаимозаменяемости. Это позволяет достичь высокой точности в сопряжениях, при незна­чительном увеличении затрат на контроль (рис 3.1).

Рис. 3.1. Селективная сборка

Метод пригонки и регулирования - предусматривает наличие в раз­мерной цепи компенсирующего звена, положение которого регулируется в процессе сборки (регулировка зазоров, прокладки и т.п.).

Приспособления, применяемые при сборке, классифицируются сле­дующим образом:

Зажимные приспособления (предназначены для базирования и закреп­ления базовых деталей, с которых начинается сборка узла или изделия);

Установочные приспособления (предназначены для точной установки соединяемых деталей друг относительно друга);

Рабочие приспособления (используемые при выполнении отдельных пере­ходов технологических операций сборки (гайковёрты, прессы и т.д.));

Контрольные приспособления.

Разработка технологического процесса сборки осуществляется в сле­дующей последовательности:

Этап 1. Анализ исходных данных:

Изучение чертежей изделия и деталей, технических требований на сборку и приемку изделия;

Выбор организационных форм сборки;

Классификация видов соединений деталей;

Выбор метода сборки;

Установление годовой программы выпуска;

Определение продолжительности выпуска.

Этап 2. Разработка технологических схем общей и узловой сборки.

Изучение собираемого изделия завершается составлением техноло­гических схем общей (рис. 3.2) и узловой сборки (рис. 3.3). Технологиче­ские схемы сборки составляются на основе сборочных чертежей изделия. На них каждая составная часть изделия обозначается прямоугольником, разделённым на три части (рис. 3.4). В части А указывается наименование элемента, в части Б - числовой индекс согласно спецификации, в части В - число элементов, входящих в данное соединение. Перед числовым индек­сом сборочной единицы изделия ставятся буквы Сб (сборка) и номер по­рядка: 1сб, 2сб и т.д.

Элемент, с которого начинают сборку изделия или его сборочной единицы, называют базовым. По его номеру ставят числовой индекс со­ставной части, в которую он входит.

Процесс общей сборки изображают на схеме горизонтальной линией. Её проводят в направлении от базового элемента изделия к собранному объекту.

Сверху (рис.3.2) в порядке последовательности сборки располагают условные обозначения всех непосредственно входящих в изделие де­талей, снизу - сборочных единиц. На технологических схемах узловой сборки сборочные единицы расчленяют на сборочные единицы высших порядков и детали.

Технологические схемы сборки снабжают надписями - сносками, по­ясняющими характер сборочных работ ("Запрессовать", "Паять", "Клепать", "Регулировать", "Проверить зазоры" и пр.) и выполняемый при сборке кон­троль.

Схемы отражают возможности одновременной установки несколь­ких составных частей изделия на его базовую деталь (рис. 3.2, точка А), что позволяет сократить длительность цикла сборки.

Рис. 3.2. Технологическая схема общей сборки

Рис. 3.3. Технологическая схема узловой сборки

Рис. 3.4. Условное изображение сборочных единиц

Этап 3. Разработка маршрутной технологии общей и узловой сборки.

Процесс сборки изделия или узла разбивается на отдельные операции, выполняемые в определенной последовательности. В одну операцию может входить сборка нескольких деталей и узлов. Она характеризуется законченностью действий.

Маршрут сборки - это набор технологических операций, выполняе­мых в строго определенной последовательности.

Критерием для разделения маршрута на операции является такт вы­пуска t B .

Необходимо, чтобы длительность технологической операции t шт не пре­вышала такта выпуска t B (t шт < t B).

,

где: F cp - действительный годовой фонд времени работы оборудования, в часах; N - годовая программа выпуска изделий, в штуках.

Этап 4. Разработка технологических операций сборки.

Разработка производится в следующей последовательности:

Разработка содержания и последовательности переходов;

Выбор оснастки, инструментов, оборудования;

Расчет норм времени на выполнение каждого перехода и всей операции;

Оформление технической документации (ОК, чертежей наладок, операци­онных эскизов сборки).

Разработка ТП в общем случае включает следующие основные этапы:

– анализ исходных данных для разработки ТП;

– выбор действующего типового и группового ТП, а при их отсутствии –поиск аналога единичного ТП;

– выбор заготовки и методов ее получения;

– выбор технологических баз;

– разработка маршрута обработки;

– разработка операций ТП;

– нормирование ТП;

– разработка мероприятий по технике безопасности;

– экономическая оценка разработанного ТП;

–оформление технологической документации.

При анализе исходной информации изучается краткое служебное назначение изделия, рабочие чертежи, технические условия на изготовление и приемку изделия, годовой объем выпуска изделия.

При анализе изучаются назначение и функции детали в изделии, наличие в рабочем чертеже всех данных, необходимых для изготовления и контроля деталей. Производится технологический контроль конструкторской документации. Технологичность конструкции оценивается с точки зрения технологии изготовления.

Рассматривается обоснованность требований по точности и шероховатости поверхностей, выявляются возможности тех или иных изменений, не влияющих на качество детали, но упрощающих процесс ее изготовления, обеспечивая возможность применение прогрессивных методов и режимов обработки.

На этапе выбора ТП на основании конструкторской документации и технологического классификатора формируется технологический код детали с последующим ее отнесением по данному коду к действующему типовому, групповому или единичному ТП.

Выбор технологических баз является ответственным этапом разработки ТП и определяется конструктивной сложностью детали и методами ее обработки.

В зависимости от конструкции детали возможны следующие варианты базирования:

– заготовка устанавливается на необработанные поверхности (черновые базы) и при одной установке производится ее полная обработка (детали простой формы, обрабатываемые на автоматах, агрегатных станках, приспособлениях – спутниках, на станках с ЧПУ);

– детали базируются на обработанные поверхности (чистовые базы). Данные поверхности были обработаны на предшествующих операциях с базированием по черновым базам;

– базирование производится на последовательно сменяемых чистовых базах.

В зависимости от особенностей конструкции детали и условий обработки могут применяться и другие варианты базирования.

При выборе технологических баз необходимо обеспечивать принцип совмещения баз, когда погрешность базирования равна нулю, что обеспечивает повышенную точность обработки. Обеспечение принципа постоянства баз дает возможность повышения точности взаимного расположения поверхностей. Базирование может производиться с учетом удобства установки и снятия заготовки, подвода режущего инструмента.

При выборе варианта получения заготовки исходят из технологических свойств материала заготовки (литейные свойства, пластические деформации при обработке давлением), размеров и формы заготовки, требований по точности, шероховатости и качеству поверхности заготовки, годового объема выпуска и типа производства. Выбранный вариант должен обеспечивать наименьшую себестоимость изготовления готовой детали. Выбор варианта получения заготовки и его обоснование производится на основании расчета технико-экономических показателей.

Одновременно с выбором технологических баз разрабатывается маршрут обработки поверхностей заготовки. В соответствии с рабочим чертежом и выбранной заготовкой по заданному квалитету точности и шероховатости детали выбирается один или несколько методов окончательной обработки детали. Решение данной задачи облегчается при использовании технологических параметров различных методов обработки. Исходя из принятой заготовки, устанавливают первоначальный метод обработки. При недостаточной точности заготовки предусматривается черновая обработка, а при высокой точности – сразу чистовая, а иногда и отделочная обработка. Зная первоначальный и конечный методы обработки, производят выбор промежуточных методов обработки, при этом каждый последующий метод точнее предыдущего при черновой обработке на 1-3 квалитета точности, при чистовой – на 1-2 квалитета точности. При обработке чугунов и цветных сплавов точность обработки повышается на один квалитет по сравнению с обработкой стальных заготовок в аналогичных условиях. Исходя из вышесказанного, необходимо обеспечивать требуемую точность наиболее экономичным путем.

Выбор методов обработки и количества операций устанавливается из следующих соображений:

– требования к качеству готовой детали (по точности и шероховатости);

– требования к качеству исходной заготовки;

– требуемой точности обработки каждой из поверхностей заготовки;

– количества обрабатываемых поверхностей заготовки и их взаимное расположение (соосно, на одной или нескольких сторонах);

– точности выбираемых технологических систем для окончательной обработки детали.

На основании выше изложенного необходимо выбирать такие методы обработки каждой из поверхностей заготовки, которые обеспечивают заданное качество при наименьшей себестоимости.

При выборе метода обработки желательно, чтобы все или большинство поверхностей заготовки обрабатывались бы одним методом, что позволяет совместить во времени максимальное количество переходов, сократить потребное количество оборудования, уменьшить себестоимость и трудоемкость изготовления.

Разработанный маршрут обработки дает общий план обработки поверхностей заготовки, намечает содержание операций, устанавливает тип оборудования. На основании маршрута, выбора операции и методов обработки определяются припуски и промежуточные размеры на обработку опытно-статистическим или расчетно-аналитическим методом.

При разработке операций технологического процесса уточняется их содержание, намеченное при разработке маршрута, определяется последовательность выполнения переходов, возможность их совмещения во времени, уточняется тип оборудования, инструмента, оснастки, выбираются режимы резания.

Проектирование операций может производиться по принципу концентрации или дифференциации технологических переходов. При проектировании по принципу концентрации технологический процесс состоит из небольшого количества операций, сложных по своей структуре. При данном методе сокращается потребное количество оборудования, оснастки, рабочих, сокращается цикл изготовления изделия. При проектировании по принципу дифференциации технологический процесс характеризуется большей гибкостью при переходе с обработки одного изделия на другое, характеризуется более простым оборудованием и оснасткой, сокращается цикл разработки изделия, но увеличивается межоперационное транспортирование и межоперационные заделы, увеличивается производительный цикл.

По количеству обрабатываемых заготовок схемы операций подразделяются на одноместные и многоместные, по количеству используемых инструментов – на одно- и многоинструментальные. При этом обработка заготовок и выполнение переходов может производиться последовательно, параллельно, параллельно-последовательно.

Рассмотрим различные схемы операций, приведенные на рис. 85

а – одноместная последовательная; б – одноместная последовательная многоинструментальная; в – одноместная многоинструментальная параллельная;

г – одноместная многоинструментальная параллелноследовательная;

д – многоместная одноинструментальная последовательная; е – параллельная многоместная многоинструментальная; ж – многоместная параллельно-последовательная одноинструментальная; з – многоместная параллельно-последовательная одноинструментальная

Рисунок 85

При проектировании операции разрабатывается схема наладки станка, определяются настроечные размеры, разрабатывается план размещения инструмента в суппортах и резцовых головках по переходам, предусматривается возможность одновременной работы всех инструментов; при этом необходимо предусматривать, чтобы силы резания при работе различных инструментов компенсировались.

На выбор типа оборудования оказывает влияние степень концентрации переходов. При высокой концентрации предпочтительны модели многосуппортовых и многошпиндельных станков с большим циклом автоматизации рабочих органов (многооперационные и комбинированные станки, станки с ЧПУ). В случае необходимости выдается задание на проектирование нового оборудования.

Выбор режущего инструмента производится по принятому методу обработки и промежуточным припускам и размерам на обработку, а так же расчетом по силе резания.

На этапе нормирования производится расчет норм времени с указанием разряда работы, определяются нормы расхода материалов.

Разработка мероприятий по технике безопасности производится на основе стандартов и инструкций.

Расчет экономической эффективности производится на основе методики экономической оценки и сравнения разработанных вариантов технологических процессов.

Разработанный технологический процесс оформляется в соответствии с требованиями ЕСТД. Разработанная технологическая документация подвергается нормоконтролю и согласованию с заинтересованными службами. Последовательность разработки ТП и их содержание определяются конкретными условиями производства в соответствии со стандартом предприятия.